
PINGSoft 2 User’s Guide

F. Fabián Rosales-Ortega

Departamento de F́ısica Teórica, Universidad Autónoma de Madrid, Spain

Instituto Nacional de Astrof́ısica, Óptica y Electrónica, Mexico

frosales@inaoep.mx

November, 2012

mailto:frosales@inaoep.mx

Contents

1 What is PINGSoft? 1
1.1 New features . 1

Acknowledgements 1

2 Installation 2
2.1 IDL Graphic Settings . 3
2.2 Mouse cursor problems in Mac OSX . 3

3 Supported formats 3
3.1 The 3D cube format . 3
3.2 The RSS format . 4
3.3 Default supported instruments . 4

4 The PINGSoft integral field spectroscopy software 5
Visualisation . 5

view ifs . 5
view 3D . 7

Spectra extraction . 9
extract region . 10
extract aperture . 10
extract radial . 11
extract slit . 13
extract cone . 13
extract mask . 14
integrate 3D . 16

Data products and analysis . 18
extract filter . 18
vfield 3D . 19
s2n ratio 3D . 21
voronoi 3D . 24

Important note on S/N and Voronoi binning . 25
s2n optimize . 28

IFS manipulation . 30
split califa . 30
cube2rss . 30

Miscellaneous functions . 31
redshift 3D . 31
offset2radec . 31
radec2offset . 32
set value2D . 32
set value3D . 33

Retired routines . 34

5 Additional notes 35
5.1 Intensity scaling . 35
5.2 PMAS users . 35
5.3 VIMOS users . 35

6 PINGSoft quick list 36

Copyright 37

1 What is PINGSoft?

The PINGS software, or PINGSoft, is a set of IDL routines designed to visualise, manipulate, and analyse
integral field spectroscopy (IFS) data regardless of the original instrument and spaxel shape (Rosales-
Ortega, 2011). The routines were originally developed for PINGS: the PPAK IFS Nearby Galaxies Survey
project (Rosales-Ortega et al., 2010).

PINGSoft 2 is a relatively major upgrade with respect to the first version: the overall functionality and
layout have been improved, while the command syntax has been simplified. This version includes new
routines that offer powerful spatial and spectral visualisation of the data, improved extraction routines,
and new analysis tools. PINGSoft is optimised for a fast visualisation rendering, it supports 3D cube and
RSS formats, it is able to run on practically any computer platform with minimal library requirements,
and is adapted to work natively with the CALIFA survey data.

1.1 New features

� A new Graphical User Interface (widget) for interactive visualisation of the spaxels and spectra of
a 3D cube or RSS file.

� The data can be convolved with a full set of narrow and broad-band filters for visualization and/or
analysis purposes. The filter used to visualize the data is shown on the spectral window.

� Elliptical apertures for spectra extraction are now supported (for any ellipticity, size and PA).

� Radial binning extraction with either fixed bins or based on a S/N floor.

� Spectra extraction and integration based on a user-given mask.

� Conic or hyperbolic aperture extractions for any PA, size and angle.

� Spectra integration based on S/N on continuum and/or emission line features.

� Voronoi binning based on the method developed by Cappellari & Copin (2003).

� Intrinsic velocity field correction using a wavelength cross-correlation.

� Furthermore, the PINGSoft routines can now read 3D cubes or RSS files indistinctively. The syntax
is much simpler, e.g. to load a RSS file the user only needs to include the name of the FITS file
(and omit the position table) if the format is the following: OBJECT.fits, OBJECT.pt.txt, and
both files reside on the same directory.

IMPORTANT:

If you find this code useful for your research please acknowledge the use of PINGSoft
in your publications:

Rosales-Ortega (2011) NewAstron 16, 220

PINGSoft is distributed in the hope that it will be useful, but without any warranty.
Bugs, errors and inconsistencies (especially with non-tested instruments) are
expected. If you want to report a bug, or if you have any comments or suggestions
please contact the author at: frosales@inaoep.mx

PINGSoft is licensed under GPLv3.

http://califa.caha.es/
frosales@inaoep.mx

2 Installation

In this document we assume that the user will be installing PINGSoft in a Linux/Mac UNIX-based com-
puter via a terminal window running IDL, and that the software will be called within an IDL-running
terminal in command-based mode.

1. Unpack the TAR file containing the PINGSoft 2 library (pingsoft v2.tar.gz). This will create a
directory named pingsoft/, with all the codes of the distribution and additional subdirectories.
Include this directory in your $IDL PATH.

2. PINGSoft requires the latest versions of: a) the NASA IDL Astronomy Library; b) the set of routines
created by David W. Fanning, known as the Coyote Library, both available at:

- http://idlastro.gsfc.nasa.gov

- http://www.idlcoyote.com/documents/programs.php

respectively, these additional libraries should be included in your $IDL PATH.

3. Optionally, for the voronoi 3D.pro routine the user will need the Voronoi Binning IDL source code
method by Cappellari & Copin 2003, available at: http://www-astro.physics.ox.ac.uk/∼mxc/
idl/#binning

4. Finally, you need to define a $PINGSOFT PATH system variable, pointing to the location where the
pingsoft/ directory resides, e.g. for a Bash shell:

---- PINGSoft path

export PINGSOFT_PATH=${HOME}/idl/pingsoft

This is all you need to install PINGSoft, to check if the installation was done correctly, open a new
terminal, run IDL and type:

IDL> check_pingsoft

If the installation is correct, you should see the following window:

Otherwise, the script will prompt if you miss any library or the $PINGSOFT PATH is not properly set.

2

http://idlastro.gsfc.nasa.gov
http://www.idlcoyote.com/documents/programs.php
http://www-astro.physics.ox.ac.uk/~mxc/idl/#binning
http://www-astro.physics.ox.ac.uk/~mxc/idl/#binning

2.1 IDL Graphic Settings

PINGSoft uses by default a white background and a combination of certain X-device parameters and
colour tables, contrary to the default IDL graphic device settings (e.g. with black as background colour).
These graphic settings are defined in the pingsoft display.pro routine. If you want to come back to
your original display settings you need to exit IDL and log in again, without invoking any PINGSoft
routine.

2.2 Mouse cursor problems in MacOSX

Some Mac OSX users might find problems using properly the mouse cursor in IDL. This is related with
some conflicts between the X11 settings and the default window manager. In particular for Snow Leopard,
the user needs to install and use XQuartz instead of the default X11 application (in Lion Mountain X11
is not even installed by default). XQuartz is available at:

http://xquartz.macosforge.org/

Most of the cursor problems (mouse hanging while cursor command is active) can be solved by going
to the X11/XQuartz Preferences, Windows, then check “Click-through Inactive Windows”. Additional
information on how to solve the mouse cursor problem can be found here:

http://tinyurl.com/mouse-idl-mac

http://www.idlcoyote.com/misc tips/maccursor.html

3 Supported formats

PINGSoft supports 3D cubes and Row Stacked Spectra (RSS) FITS files, all routines can read 3D cubes
or RSS files indistinctively (no need to transform 3D cubes to the RSS format or to indicate the data
type). Furthermore, PINGSoft supports natively all data formats and FITS extensions of the CALIFA
survey.

All PINGSoft routines follow a very simple syntax, 3D cubes can be loaded by simply entering the FITS
file name (both .fits and .fits.gz extensions are supported). To load a RSS file the user only needs
to include the name of the FITS file, and omit the position table if the file name format is the following:

FITS RSS file: OBJECT.fits (or OBJECT.fits.gz)
Position table: OBJECT.pt.txt

and both files reside on the same directory (see below for an explanation of the RSS format). If the IFS
data to visualise/analyse are in the data formats explained below, then PINGSoft should work smoothly
and the visualisation/manipulation of the data should be straightforward.

3.1 The 3D cube format

In the case of 3D cubes, the first two data axes should correspond to the spatial axes, the Right Ascen-
sion (RA) is assumed to be in first data-axis, Declination (Dec) in the second data-axis. The third axis
corresponds to the dispersion axis. The spaxel shape should be squared in a continuous (contiguous)
grid. PINGSoft assumes that the spaxel size/resolution is contained in the CDELT1 FITS header entry, in
units of arcsec. The dispersion vector is built from the values in CRVAL3, CDELT3, CRPIX3, and NAXIS3,
supported units are Angstroms, microns and milli-arcseconds. Negative CRPIX3 values are supported.

In the case that the World Coordinate System (WCS) is included in the FITS header, PINGSoft
assumes that the reference Right Ascension value is stored in the CRVAL1 entry, and the reference Dec-
lination in the CRVAL2 value, both must be in degrees. The reference spatial position coordinates (from
which RA-Dec offsets are calculated) is assumed to be in the CRPIX1 and CRPIX2 values.

3

http://xquartz.macosforge.org/
http://tinyurl.com/mouse-idl-mac
http://www.idlcoyote.com/misc_tips/maccursor.html

3.2 The RSS format

The Row Stacked Spectra or RSS format consists in a 2D FITS image in which the X-axis corresponds to
the dispersion axis, and the other one corresponds to a given spatial ordering of the spectra determined by
a corresponding position table, i.e. the N -row in the Y -axis corresponds to the spectrum at the position
(XN , YN) ≡ (∆RAN , ∆DecN) from a (0, 0) reference point (in arcseconds), which is the N entry of
the ASCII file position table. The number of rows on the RSS FITS file is equal to the total number of
spectra of the IFS data, i.e. the spectra are stacked one on top of each other in the Y -axis. The format
of the input position table should be the following:

C 1.34 0 0

1 -13.936 0.000 1

2 15.686 3.019 1

3 0.000 12.071 1

4 -13.936 12.077 1

5 13.935 12.077 1

6 -10.452 6.038 1

...

where the first line determines the size and shape of the spaxel (see below), and the following entries
correspond to: ID# Xoffset Yoffset flag, where ID# is the spectrum number identification (integer value)
and flag might be any numerical value (used sometimes for internal quality control). The size and shape
of the spaxels is determined by the first two entries of the first line of the position table, the first
character should be either a C or S, which corresponds to a circular (e.g. fibre, PPAK) or square (e.g.
PMAS, VIMOS) spaxel, and the second entry should be a floating number corresponding to the radius
or side length respectively, e.g.:

C 1.34 Circular spaxel, with a radius 1.34 arcsec, i.e. PPAK
S 0.67 Square spaxel, with sides of length 0.67 arcsec, i.e. VIMOS

see the position tables in the $PINGSOFT PATH/pos tables directory for more examples.

In addition to the format restrictions mentioned above, the RSS file should be wavelength calibrated
and the spectral information should be included in the FITS header, namely the CRPIX1, CRVAL1 and
CDELT1 values.

3.3 Default supported instruments

Some IFU instruments are supported by default by PINGSoft, in which case no additional position ta-
bles are needed. PINGSoft can recognise the default instruments from the FITS header. The default
instruments/configurations are:

� PMAS: single pointing, 0.5, 0.75 & 1.0 arcsec configurations.

� PPAK: central bundle (331 fibres), central + sky bundles (382 fibres) & standard dithered config-
uration (993 fibres).

� VIMOS: single pointing, all resolutions in both configurations (40×40 & 80×80, 0.33 & 0.67 arcsec),
and HR dithered “super-cube” (square 4 pointing dither pattern, (44× 44 spaxels, 29.7′′ × 29.7′′).

� INTEGRAL-WHT: SB1, SB2, and SB3 standard bundles.

See Sec. 5 for more information on these instruments. Additionally, the p3d software for IFS data
reduction (Sandin et al., 2010) includes fiber position tables in the PINGSoft format for most instruments
supported by p3d1. PINGSoft is known to work also with SINFONI data.

1 Stored at: $p3d path/data/tables/pingsoft postables/

4

4 The PINGSoft integral field spectroscopy software

All PINGSoft routines are called via command lines in a terminal running IDL. The syntax and online
help for any program can be obtained by entering the name of the procedure without any parameter or
keyword, With the exception of the visualisation widget: view ifs, /help.

Additionally, in the PINGSoft webpage you can download the pingsoft examples/ directory which
includes some 3D cubes and RSS example files. I recommend the user to download this example data
and follow the instructions in the README.pro file in order to get a first insight of the main PINGSoft
routines. All the example commands used in this document can be found in the README.pro file of the
pingsoft examples/ directory.

Visualisation

view ifs

This routine provides a spatial and spectral interactive visualisation widget for 3D cubes and RSS IFS
files. If the command is simply entered in the IDL terminal:

IDL> view_ifs

it prompts for an input FITS file using a dialog window. Otherwise, the input file can be passed directly
to the command as the first parameter:

IDL> view_ifs, 'OBJECT.fits'

The widget will be displayed automatically if the input file is a 3D FITS cube. If the input FITS is a
RSS file, the program will look in the same directory for a position table named OBJECT.pt.txt and will
launch the widget if the file exists. If this is not the case, the program will exit with an error. The user
can define the name of the corresponding position table using the PT parameter:

IDL> view_ifs, 'OBJECT.fits', PT='PosTable.txt'

The view ifs widget is shown in Fig. 1, displaying the 3D cube file ngc4625.rscube.fits included
in the pingsoft examples/ directory. The widget displays two main panels, on the right a visuali-
sation of the spatial distribution of spaxels (or field-of-view, FoV). The color-scaling corresponds to a
narrow/broad-band image of a transmission filter convolved with the data at a given wavelength 2 (shown
as a dotted-curve in the spectral window). The spatial units are assumed to be arcseconds in a standard
North (up) East (left) configuration. The left panel shows the spectrum of the spaxel corresponding to the
position of the mouse, the wavelength range is extracted from the information on the FITS header. The
corresponding spaxel position, ID3 and offsets are shown on the top of the spectral window. Optionally, if
the WCS is included in the FITS header, the RA and Dec are also shown in sexagesimal and degree units, a
mouse LEFT-click prints the same spaxel information on the IDL terminal where the program was called.

USAGE: At first glance, the usage of the view ifs widget may seem “tricky”, but it is easy to get
used to: when the widget is launched, the user can explore spatially and spectrally the IFS data but the
widget options will be inactive. To have access to the widget options, the user needs to RIGHT-click
with the mouse over the FoV panel. When the widget options are changed the spectral explorer will
become active again and the widget options will be unavailable. To active/deactivate the widget options
the user only needs to RIGHT-click over the FoV to switch between the explorer ON/OFF options. The
status bar above the FoV panel (below the object name) will indicate whether the explorer is active or not.

2 Default: Hα narrow-band filter of 80 Å FWHM with central wavelength at 6547 Å, if this wavelength is outside the
spectral range, the filter is shifted to the mean wavelength.

3 In the IDL format, i.e. starting at zero

5

http://www.ast.cam.ac.uk/ioa/research/pings/media/pingsoft_examples.tar.gz

Figure 1: Screen shot of the visualisation widget launched by the view ifs command, displaying the 3D
cube of the galaxy NGC 4625 included in the pingsoft examples/ directory.

Several options are available to visualise the data, including different intensity scalings, color maps,
a set of different narrow and broad-band filters in the optical to generate the visualisation in the FoV
panel, the choice to define the flux intensity and spectral ranges, to drawing the contour of the spaxels,
to invert the color-map, etc. Note that the central wavelength of the filter used to display the data can
be shifted to any position along the spectral range, either by using the slider or by setting the wavelength
in the corresponding field. New FITS (position tables) files can be loaded using the corresponding fields
at the top-center of the widget, and by pressing the “Load FITS” button.

Extract region: By pressing this button, all the subsequent LEFT-clicks over the FoV panel will mark
and select the spaxels to be extracted. When the program is terminated (by RIGHT-click) the following
files are created:

Extracted RSS: OBJECT_rss.fits (Extracted RSS of the selected spaxels)

Position table: OBJECT_rss.pt.txt (Position table of the new RSS file)

Integrated ASCII: OBJECT_integ.txt (Integrated spectrum in ASCII format)

FITS: OBJECT_integ.fits (Integrated spectrum in FITS format)

Postscript: OBJECT_integ.eps (Postscript image of the integrated spectrum)

IDL indices: OBJECT_index.txt (IDL indices of the selected spaxels)

shown in the IDL terminal window, while the spectral panel will show the integrated spectrum of the
selected spaxels.

Extract slice: Pressing this button will invoke the extract filter command with the filter and central
wavelength parameters as the current values displayed in the widget. This will create a FITS image file
called OBJECT slice.fits as reported in the status bar, additional information will be shown in the IDL
terminal window. WARNING: This option is only available for 3D cubes and RSS with a rectangular-
contiguous grid.

Write Postscript: Pressing this button will create an encapsulated Postscript image (OBJECT FoV.eps)
of the FoV panel with the current display options of the widget. The name of the file will be reported in

6

Figure 2: Screen shot of the visualisation widget for a CALIFA datacube, the bad-pixels are displayed in
a light-blue color in the spectral panel.

the status bar and terminal window.

Mark wavelength: Use this field to enter one or several wavelengths at which a vertical line will be
drawn in the spectral panel. This option is useful when trying to identify features at known wavelengths.
The input formats can be of the form:

Mark wavelength: 6563

5007, 6563

5895*1.002 (e.g. known redshifts)

[4310,5876]*1.0015

CALIFA data: When a CALIFA data file is loaded with view ifs, the display color is changed to the
CALIFA-special color map, the routine identifies automatically the different FITS extensions (HDUs)
of the CALIFA format (for both RSS and 3D cube versions). The BADPIX extension is shown in the
spectral panel simultaneously with the flux data, the bad-pixels are displayed in a light-blue color as
shown in Fig. 2.

Size and resolution: The view ifs widget may not display properly for screens with resolutions lower
than 1400×800. In this case, the user can modify by hand the size of the widget to fit their own screen
resolution by editing the first entries in the widget param.pro routine.

view 3D

This routine is the command-line version of view ifs, it provides a 2D interactive visualisation of the
spaxels and spectra of a 3D cube or a RSS file and its corresponding position table. However, the vi-
sualisation is performed in two standard IDL windows (i.e. a lighter visualisation option). All display
and interactive options are similar to view ifs (with the exception of the “Extract slice” option), the
command is terminated by RIGHT-click on the FoV window.

7

A mouse MIDDLE-button click is equivalent to the “Extract region” button in the widget, it prompts
in the IDL terminal for a PREFIX used to generate the new series of files, all the subsequent LEFT-clicks
over the FoV window will mark and select the spaxels to be extracted. The extraction is performed by
RIGHT-click on the FoV window, the extracted files are displayed in the terminal window, while the
spectral window shows the integrated spectrum of the selected spaxels.

Additional features:

1. The view 3D routine accepts the /LARGE keyword, which displays a much larger FoV window.

2. The user can specifying the FITS extension to read using the EXTENSION keyword

3. An optional output IDL structure can be obtained when spaxels are manually selected.

4. The EXTRA structure keyword can be set for user’s defined specific graphics output, both for the
IDL window or Postscript output, e.g. EXTRA={title:’IFS cube’,xrange:[-60,50]}

Calling sequence:

view_3D, 'OBJECT.fits' [, OUT.str, PT='Ptable.txt', EXTENSION=extension, $

MIN_FLUX=min_flux, MAX_FLUX=max_flux, LMIN=lam_min, LMAX=lam_max, $

FILTER=filter, BAND=band, CT=ct, VLINE=vline, FONT=font, $

/CLIP, /GAMMA, /LOG, /ASINH, /SQRT, /HISTOGRAM, /GAUSSIAN, $

/PS, /DRAW, /LARGE, /NOBAND, _EXTRA={extra}]

INPUTS:

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

OPTIONAL KEYWORDS:

OUT.str: Output IDL structure (when spaxels are manually selected).

PT='Ptable.txt': Name of the position table in ASCII format for an input RSS file

in (North-East configuration).

NOTE: compulsory if not included in the default instruments/setups

or when the name is not in the 'OBJECT.pt.txt' format.

EXTENSION: Non-negative scalar integer specifying the FITS extension to read.

For example, specify EXTENSION = 1 to read the first FITS extension.

MIN/MAX_FLUX: Minimum/maximum flux in the spectral window to be plot, if

not set these are floating values.

LMIN/LMAX: Defines the wavelength range on the spectral window,

if not set values are taken from the FITS header.

FILTER: Internal number of the narrow or broad-band filter used to

display the data. Available filters and corresponding

numbers can be obtained by typing: IDL> pingsoft_filters

Default: 1 (Halpha KPNO-NOAO - CWL: 6547A FWHM: 80)

BAND: Central wavelength of the narrow or broad-band used to

display the data, i.e. shifts the band to the position

defined by the user (if within the spectral range).

Defaults: nominal central wavelength of the

corresponding filter (mean wavelength if outside the range).

VLINE: Either a floating value or a vector of floating

numbers containing the lambda value at which a single or

several vertical lines will be drawn for reference

purposes, equivalent to "Mark wavelength" in the VIEW_IFS widget,

e.g. VLINE=6500 or VLINE=[4200,5400,6700].

CT: IDL Color Table used to display the data, (default ct=1, BLUE/WHITE).

/PS: Writes an encapsulated Postscript file of the spaxels visualisation.

FONT: Postscript IDL font to be used when /PS is set. Default: 12 (Helvetica)

/DRAW: Draws the contours of the spaxels.

8

/LARGE: Displays a larger window for the spatial distribution

of spaxels (right window).

/NOBAND: The narrow/broad band is not drawn in the spectral window.

_EXTRA: Structure with the _EXTRA tags for user's defined graphics output,

e.g. _EXTRA={title:'IFS cube'}

Intensity Scalings:

Default: LINEAR, displays the range of intensities using a linear min/max scaling.

/CLIP: A histogram stretch, with a 2% of pixels clipped at both the top and bottom.

/GAMMA: Displays the range of intensities using a Power-law (gamma) scaling.

/LOG: Displays the range of intensities using a logarithmic scaling.

/ASINH: Displays the range of intensities using an inverse hyperbolic sine function scaling.

/SQRT: Displays a linear stretch of the square root histogram of the image values.

/HISTOGRAM: Displays a linear stretch of the histogram equalized image histogram.

/GAUSSIAN: The scaling is performed by applying a Gaussian normal function to the image histogram.

PINGSoft example 1

40 20 0 −20 −40
∆ RA (arcsec)

−40

−20

0

20

40

∆ D
ec

 (
ar

cs
ec

)

PINGSoft example 2

10 5 0 −5 −10
∆ RA (arcsec)

−10

−5

0

5

10

∆ D
ec

 (
ar

cs
ec

)

Figure 3: Postscript outputs examples of the view 3D routine

Examples:

To visualise the RSS file IRAS06295.VIMOS.fits with position table named IRAS06295.VIMOS.pt.txt
(both included in pingsoft examples/) limiting the intensity and wavelength range on the spectral
window, drawing two vertical lines at lambda 6200 and 6700, using an inverse hyperbolic sine function
scaling:

view_3d, 'IRAS06295.fits', min=-1, max=6, lmin=6200, lmax=6800, vline=[6200,6700], /asinh

To create a Postscript image of the ngc4625.dither.fits RSS file, with the spaxels drawn, the PINGSoft-
special colour table, a 2% clipping scaling, using a narrow-band Hα 20 Å filter, and a special title (shown
in Fig. 3):

view_3d, 'ngc4625.dither.fits', ct=44, filter=2, /clip, /draw, /ps, _extra={title:'PINGSoft example 1'}

To create a Postscript image of IRAS06295.rscube.fits, with rainbow colour table, and using a B-
Johnson (1965) filter and a special title (shown in Fig. 3):

view_3d, 'IRAS06295.rscube.fits', ct=33, filter=3, /ps, _extra={title:'PINGSoft example 2'}

9

Spectra extraction

The following section describes the extraction routines of PINGSoft. Given the similarity of the inputs
and/or optional keywords of these routines, only the relevant parameters for each program will be ex-
plained in this document. For more information see the online help (by typing the command line in the
IDL terminal). Note also that, by default, all routines opens a FoV visualisation as view 3D, showing
the simulated aperture and extracted spaxels. On the other hand, if the /PS keyword is set, a Postscript
image of the FoV is generated. The /PLOT and /PS keywords are mutually exclusive. All routines have
similar display options as in view 3D.

extract region

Extracts the spectra of spaxels/regions selected by hand. This is a direct implementation of the “Extract
region” button of the view ifs widget or the MIDDLE-click option of view 3D. The script opens a similar
visualisation as view 3D, where the user can select spaxels by successive LEFT-clicks on the right win-
dow. The same output files are created as in the previous examples. Similar display options as in view 3D.

Calling sequence:

extract_region, 'OBJECT.fits' [, OUT.str, PT='PosTable.txt', PREFIX='prefix', $

EXTENSION=extension, (+ all visual options of VIEW_3D)]

PREFIX: String with the prefix of the output files, default: 'region'

Example:

Extract spaxels from the ngc4625.331.fits (single PPAK exposure), with prefix ‘TEST and display the
extraction using view 3D (example shown in Fig. 4):

extract_region, 'ngc4625.331.fits', prefix='TEST'

view_3d, 'TEST_rss.fits', /draw

Figure 4: Examples of spaxel extraction using the extract region command. On the left, a single frame
of NGC 4625 showing the selected spaxels outlined in red. On the right, visualisation of the selected
spaxels by using the view 3d command on the generated RSS and position table files.

10

extract aperture

Extracts the spectra within an elliptical or circular aperture. The user can define a circular aperture of
any physical dimension (in arcsec) centered at a given position from the reference point. The program
then extracts the spaxels which centers fall within the aperture, generating a new RSS and position table
files, the integrated spectrum in ASCII, FITS and EPS format. Similar display options as in view 3D.

Calling sequence:

extract_aperture, 'OBJECT.fits', x0, y0, semi_major, semi_minor, PA

[, out_str, PREFIX='prefix', PT='PosTable.txt', EXTENSION=extension,

/PLOT, /PS, FONT=font, _EXTRA={extra},

(+ all visual options of VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

x0/y0: RA/Dec offsets (in arcsec) of the central position of the aperture to be simulated.

semi_major: Semi-major axis of the simulated elliptical aperture (in arcsec)

semi_minor: Semi-minor axis of the simulated elliptical aperture (in arcsec)

PA: Position angle of the major-axis, measured counterclockwise from the North.

OPTIONAL KEYWORDS

PREFIX: String with the prefix of the output files. Default: input positions

/PLOT: Display the visualisation and the simulated aperture.

/PS: Writes an encapsulated Postscript file of the spaxels visualisation

and the simulated aperture.

Examples:

A circular aperture of 15 arcsec radius (semi-major = semi-minor), centered at (-2,3), with graphic
visualisation, power-law scaling and outlined spaxels (left-panel Fig. 5):

extract_aperture, 'ngc4625.dither.fits', -2, 3, 15, 15, 0, /gamma, /draw, /plot, $

_extra={title:'PINGSoft: circular extraction'}

An elliptical aperture of 8 arcsec in major axis, 4 arcsec in minor axis, centered at (2,0), with an inclination
of 45 degrees, with defined prefix, using the GREEN/WHITE colour table (right-panel Fig. 5):

extract_aperture, 'IRAS06295.fits', 2, 0, 8, 4, 45, /plot, ct=8, prefix='elipse', $

_extra={title:'PINGSoft: elliptical extraction'}

PINGSoft: circular extraction

40 20 0 −20 −40
∆ RA (arcsec)

−40

−20

0

20

∆ D
ec

 (
ar

cs
ec

)

PINGSoft: elliptical extraction

10 5 0 −5 −10 −15
∆ RA (arcsec)

−10

−5

0

5

10

∆ D
ec

 (
ar

cs
ec

)

Figure 5: Examples of spaxel extraction using the extract aperture command.

11

extract radial

Extracts radial average spectra within consecutive elliptical rings from a reference point, based on either
fixed bins or S/N floor. Taking as a reference the input central coordinates the program extracts and
co-adds the spectra within successive rings of either 1) a given width in arcsec, or 2) an adaptive size
depending on a input S/N target, creating in both cases an integrated spectrum in each of the bins, which
are then stored in a RSS file. The initial and final radius for the extraction can be defined. The program
also generates a “Radial reference table” with the information of the bin size and integration radius, as
displayed in the terminal. This position table can be used to visualise the radial extracted spectra using
the view 3D command. Similar display options as in view 3D.

S/N based extraction: In the case of adaptive bin size based on S/N floor, the S/N is calculated using
a ”standard” definition, e.g. S/N = µ/σ of the flux band chosen. If the user sets the /PROXY keyword, the
S/N is calculated using an optional S/N definition: S/N = µ/

√
(σ) which is equivalent to a density S/N,

i.e. a PROXY for the surface brightness of the object. Note that the user can change the calculation of
the S/N by editing the s2n rat function at the beginning of the program.

WARNING: The S/N based extraction is highly unstable, the S/N depends heavily on the spectral band,
width and type of data.

Calling sequence:

extract_radial, 'OBJECT.fits', x0, y0, epsilon, PA, step

[, RMIN=rmin, RMAX=rmax, S2N=s2n, LAM_S2N=lam_s2n, WIDTH=width, /PROXY,

OUT.str, PT='pos_table.txt', PREFIX='prefix', EXTENSION=extension,

(+ all visual options of VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

x0/y0: RA/Dec offsets (in arcsec) of the central position of the aperture to be simulated.

epsilon: Eccentricity of the elliptical apertures (circle=0, ellipse= < 1)

PA: Position angle of the major-axis, measured counterclockwise from the North.

step: Radial bin size in arcsec (minimum bin size in case of S/N floor).

OPTIONAL KEYWORDS

RMIN: Initial extraction radius (in arcsec), default: 0

RMAX: Final extraction radius (in arcsec), default: maximum FoV radius

S2N: Floating value of the target S/N for each radial bin.

If set, the S/N is calculated for each bin at the minimum radial size

set by the 'step' argument, if the S/N is below this value, the radius

will grow by 1 arcsec step until the S/N target is achieved.

The S/N is calculated using the "standard" definition Mean(flux)/StdDev(flux)

LAM_S2N: Central wavelength of the band at which the S/N will be calculated.

If not set, default: mean(lambda)

WIDTH: Width of the band at which the S/N will be calculated, default: 100

/PROXY: The S/N is calculated using an "optional" S/N definition:

Mean(flux)/sqrt(StdDev(flux)), which is equivalent to a "density S/N"

and it is a PROXY for the surface brightness of the object.

Examples:

Radial extraction on a VIMOS field with circular rings (i.e. PA=0, epsilon=0) of 3 arcsec, centered at
the origin coordinates (0,0), starting at 2 arcsec from the origin, up to a maximum radius of 12 arcsec:

extract_radial, 'IRAS06295.fits', 0, 0, 0, 0, 3, rmin=2, rmax=12

12

Radial extraction

6000 6200 6400 6600
Wavelength

200

400

600

800

1000

1200

1400
F

lu
x

 1

 2

 3

 4

PINGSoft: radial extraction

40 20 0 −20 −40
∆ RA (arcsec)

−40

−20

0

20

40

∆ D
ec

 (
ar

cs
ec

)

Figure 6: Example of a radial extraction using the extract radial routine.

Radial extraction on NGC 4625 of elliptical apertures with an eccentricity of 0.5, PA=120 degrees, based
on a S/N target of 80, calculated at 6100Å, up to a maximum radius of 30 arcsec (see Fig. 6):

extract_radial, 'ngc4625.dither.fits', 0, 0, 0.5, 120, 5, rmax=30, s2n=80, lam_s2n=6100

extract slit

Extracts the spectra within a rectangular aperture, resembling a long-slit observation. The user can
define a rectangular aperture of any physical dimensions (in arcsec) centered at a given position from the
reference point (in arcsec) and with a given orientation (defined by the PA). The program then extracts
the spaxels which fall within the aperture, generating a new RSS and position table files and the inte-
grated spectrum in ASCII and FITS format. Similar display options as in view 3D.

Calling sequence:

extract_slit, 'OBJECT.fits', x0, y0, length, width, PA

[, out_str, PREFIX='prefix', PT='PosTable.txt', EXTENSION=extension,

/PLOT, /PS, FONT=font, _EXTRA={extra},

(+ all visual options of VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

x0/y0: RA/Dec offsets (in arcsec) of the central position of the slit to be simulated.

length/width: Physical dimensions of the simulated slit (in arcsec). For the PA convention, length > width.

PA: Position angle of the slit, measured counterclockwise from the North.

Examples:

A slit of 50 × 5 arcsec, centered at (-3,0), with a PA=20 degrees, graphic visualisation using Power-law
scaling and outlined spaxels:

extract_slit, 'ngc4625.dither.fits', -3, 0, 50, 5, 20, /gamma, /draw

A slit of 70×5 arcsec, centered at (5,8), with a PA=72 degrees, graphic visualisation using a 2% clipping
scaling, with the filter centered at 6700Å using the BGTY color table (see left-panel of Fig. 7):

extract_slit, 'NGC5947.rscube.fits', 5, 8, 70, 5, 72, /clip, band=6700, ct=4, $

/ps, _extra={title:'PINGSoft: slit extraction'}

13

PINGSoft: slit extraction

40 20 0 −20 −40
∆ RA (arcsec)

−40

−20

0

20
∆ D

ec
 (

ar
cs

ec
)

PINGSoft: extracted slit

40 20 0 −20 −40
∆ RA (arcsec)

−10

−5

0

5

10

∆ D
ec

 (
ar

cs
ec

)

Figure 7: Example of spectra extraction using the extract slit command on NGC 5947 (left) and
resulting RSS extracted file (right)

extract cone

Extracts the spectra within a region defined by a hyperbolic cone. The user can define a circular cone
of any physical dimensions (in arcsec) centered at a given position from the reference point. The input
parameters are the angle between the major axis and either asymptote of the simulated cone, the PA
of the major axis of the cone, measured counterclockwise from the North, and optionally, an epsilon
parameter controlling the curvature of the vertex, as shown in Fig. 8. The program then extracts the
spaxels which centers fall within the cone, generating a new RSS and position table files and the inte-
grated spectrum in ASCII and FITS format. Similar display options as in view 3D.

Calling sequence:

extract_cone, 'OBJECT.fits', x0, y0, theta, PA [, EPSILON=epsilon,

[, OUT.str, PREFIX='prefix', PT='PosTable.txt', EXTENSION=extension,

/PLOT, /PS, FONT=font, _EXTRA={extra},

(+ all visual options of VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

x0/y0: RA/Dec offsets (in arcsec) of the position of vertex of the cone to be simulated.

theta: Angle between the major axis and either asymptote of the simulated cone.

PA: Position angle of the major axis of the cone, measured counterclockwise from the North.

OPTIONAL KEYWORDS:

EPSILON: Floating parameter greater-equal than 1 controling the curvature of the vertex.

Examples:

A conic extraction centered at (-15,20), with a PA=140 and theta=20 degrees, for two different epsilon
values: 0 and 20, as shown in Fig. 8:

extract_cone, 'ngc4625.dither.fits', -15, 20, 20, 140, epsilon=0

extract_cone, 'ngc4625.dither.fits', -15, 20, 20, 140, epsilon=20

14

PINGSoft: conic extraction (epsilon=0)

40 20 0 −20
∆ RA (arcsec)

−60

−40

−20

0

∆ D
ec

 (
ar

cs
ec

)

PINGSoft: conic extraction (epsilon=20)

60 40 20 0
∆ RA (arcsec)

−60

−40

−20

0

∆ D
ec

 (
ar

cs
ec

)

Figure 8: Example of spectra extraction using the extract cone command on NGC 4625, using two
different epsilon values.

extract mask

Extracts the spectra based on a user’s given mask or segmentation map. The program works in two
different ways depending on whether the input is a “mask” (i.e. a FITS image with values 0 and 1) or
a “segmentation map” (i.e. a FITS image with integer values ranging from 0,1,2,...,N). In the first case,
the routine simply applies a mask extraction to the IFS data, i.e. those regions in the mask image equal
to 0 are discarded, while regions with values equal to 1 are preserved, and a new cube is created in which
the discarded spaxels are zeroed. In the second case, for each region in the segmentation map with values
different than 0, the command integrates in the IFS cube the spectra for all spaxels with the same integer
value on the segmentation map, and appends the integrated spectrum to a new RSS file. The final output
is a RSS file with the same number of entries as the non-zero integer values of the segmentation map,
plus a Pseudo-position table for visualisation. Additionally, the program writes a new 3D cube with the
regions segmented as the input segmentation map, in which each spaxel corresponds to the integrated
spectrum at that particular region. In the segmentation map case, the program displays the FoV and
the segmented regions on an IDL window.

Note the script works only with regular-grid data, i.e. continuous 3D cubes. The 2D mask/segmentation
map and 3D cube must have the same X-Y dimensions.

Calling sequence:

extract_mask, 'OBJECT.fits', 'mask.fits' [, PREFIX='prefix',

/NORMALIZE, /SEGMENT, /PS, /SILENT, EXTENSION=extesion

(+ all visual options of VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

'mask.fits': String of the 2D mask or segmentation map FITS file.

OPTIONAL KEYWORDS

PREFIX: String with the prefix of the output files. Default: 'mask'

EXTENSION: Non-negative scalar integer specifying the FITS extension to read.

For example, specify EXTENSION = 1 to read the first FITS extension.

/NORMALIZE: If set, the integrated spectrum is normalized by the number

of spaxels used to integrate the segmentd region.

/SEGMENT: If set, the on-screen or Postscript visualisation of the

segmented regions uses a special (nicer?) color-coding

15

/NUMBER: If set, the segmentation integer numbe is plot on top of

the region

/SILENT: Omits printing output information on the terminal

/PS: Writes an encapsulated Postscript file of the segmented regions

_EXTRA: Structure with the _EXTRA tags for user's defined graphics output,

e.g. _EXTRA={title:'IFS cube'}

Examples:

Using the 2D FITS segmentation map ngc4625.seg.fits corresponding to regions with Hα emission
(H II regions) obtained with HIIexplorer (Sánchez et al., 2012), we extract the integrated spectra
within each region, using two different output visualisations options (see Fig. 9):

extract_mask, 'ngc4625.rscube.fits', 'ngc4625.seg.fits', prefix='ngc4625', ct=6, filter=2, /clip, /ps

extract_mask, 'ngc4625.rscube.fits', 'ngc4625.seg.fits', prefix='ngc4625', /segment, /number, /ps

PINGSoft: segmentation map extraction

40 20 0 −20 −40
∆ RA (arcsec)

−20

0

20

40

∆ D
ec

 (
ar

cs
ec

)

PINGSoft: optional color−coding

40 20 0 −20 −40
∆ RA (arcsec)

−20

0

20

40
∆ D

ec
 (

ar
cs

ec
)

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34 35

36
37

38

39

40

41

42

43

44

45

46

47
48

49

50

51

52

53

54

55

56
57

Figure 9: Extracted regions using a 2D segmentation map and the extract mask command on the IFS
cube of NGC 4625. Top-left: normal visualisation. Top-right: using the /SEGMENT and /NUMBER keywords.
Bottom: segmented 3D cube output as seen by view ifs.

16

http://www.caha.es/sanchez/HII_explorer/

integrate 3D

Integrates the spectra within a 3D cube or RSS file into a single spectrum. The program generates an
ASCII and a FITS file of the integrated spectrum. By default, all the spectra in the 3D cube or RSS file
are considered for the integration. This can be changed by setting the MASK (3D cube) or BAD ROWS (RSS)
keywords. In the first case, the mask should be a 2D FITS image with values 0 and 1, those regions in the
mask image equal to 0 are discarded, while regions with values equal to 1 are considered for the spectra
integration. The 2D mask image must have the same X-Y dimensions as the input cube. In the second
case, the string passed to BAD ROWS should be an ASCII file containing the indices of the spaxels to be
neglected. As an output, the integrated spectrum is displayed on screen, and a encapsulated Postscript
file is created, unless the /SILENT keyword is set.

Calling sequence:

integrate_3D, 'OBJECT.fits' [, OUT.str, PREFIX='prefix', BAD_ROWS='bad_rows.txt',

MASK='mask.fits', NORMALIZE=normalize, /SILENT]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

OPTIONAL KEYWORDS:

OUT.str: Name of the optional output structure.

PREFIX: String with the prefix of the output files.

MASK: String of a 2D FITS image with values 0 and 1, those regions in

the mask image equal to 0 are discarded, while regions with values

equal to 1 are considered for the spectra integration. The 2D mask

image must have the same X-Y dimensions as the input cube.

BAD_ROWS: String of an ASCII file with the indices of rows to be discarded

if the input is a RSS file (indices in IDL format).

NORMALIZE: Value of the wavelength where the flux is to be normalized.

/SILENT: Omits printing output information on the terminal

NOTE: ASCII and FITS output in input units (10^-16 erg s^-1 cm^-2 A^-1 for CALIFA)

Examples:

Integrate all the spectra within the RSS file ngc4625.dither.fits, normalizing to 6000 Å and excluding
the spectra with indices in the ASCII file bad index.txt’:

integrate_3d, 'ngc4625.dither.fits', norm=6000, bad_rows='bad_index.txt'

Integrate all spaxels within the 3D cube NGC5947.rscube.fits, using the 2D image mask NGC5947 mask.fits,
generated with the s2n ratio 3D command (see below), which corresponds to all regions with S/N greater
or equal to NN, and saving the results in an anonymous structure:

integrate_3d, 'NGC5947.rscube.fits', out, mask='NGC5947_mask.fits'

Files written

Integrated ASCII: integ_3D.txt

FITS: integ_3D.fits

Postscript: integ_3D.eps

Mask applied: NGC5947_mask.fits

IDL structure saved:

LAMBDA DOUBLE Array[501]

FINTEG FLOAT Array[501]

17

Data products and analysis

In this section we introduce routines that generate data products different than extracted spectra, or
apply some level of analysis to the IFS data.

extract filter

Generates a 2D FITS image after convolving the 3D data with a narrow or broad-band filter. The com-
mand creates a 2D FITS image slice of the IFS data using either one of the PINGSoft default transmission
curves or a user’s defined filter. It works only with continuous-regular grids. By default, the program
opens a FoV visualisation as view 3d, showing the output image scaling and in a second window, it
displays the integrated spectrum of the IFS data, showing the convolved band. The central wavelength
of the filter can be shifted to any within the spectral range using the BAND keyword. For narrow band
filters, the continuum at ± 100 Å can be subtracted using the /SUBTRACT option. The user can supply
its own filter by setting the USER keyword, with the string of the ASCII file containing the transmission
filter in the same format as the PINGSoft filters. Similar display options as in view 3d.

NOTE: expect weird orientations/results with RSS data.

Calling sequence:

extract_filter, 'OBJECT.fits', filter [, OUT.str, EXTENSION=extension, PREFIX='prefix',

BAND=band, USER=user, /SUBTRACT, /PS, PT=pt, _EXTRA=extra,

(+ all graphic options as VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

filter: Integer value of the default PINGSoft filter to be used (see below)

OPTIONAL KEYWORDS

PREFIX: String with the prefix of the output files.

BAND: Floating value to which the central wavelength of the broad/narrow

band filter will be shifted.

USER: String of the ASCII file containing the transmission filter,

must be in the same format as the PINGSoft filters.

/SUBTRACT: Subtracts the adjacent continuum at +/- 100 Ang, works only with

Halpha filters (1,2)

/PS: Writes an encapsulated Postscript file of the 2D convolved image.

The following table shows the transmission filters included as default in PINGSoft, the table includes the
filters name, source, central wavelength and internal integer values associated to each filter, the individual
files can be found in the $PINGSOFT PATH/filters directory. Fig. 10 show a diagram of these filters.

Available PINGSoft FILTERS:

1: Halpha KPNO-NOAO | 6547 AA 80-FWHM 11: B-Bessell (1990) | 4520 AA

2: Halpha CTIO-SINGS | 6586 AA 20-FWHM 12: V-Bessell | 5524 AA

13: R-Bessell | 6535 AA

3: B-Johnson (1965) | 4400 AA

4: V-Johnson | 5500 AA 14: B-CTIO-SINGS | 4350 AA

5: R-Johnson | 7000 AA 15: V-CTIO-SINGS | 5550 AA

16: R-CTIO-SINGS | 6500 AA

6: u-SDSS-III | 3551 AA

7: g-SDSS-III | 4686 AA 17: B-KPNO-Harris | 4357 AA

8: r-SDSS-III | 6166 AA 18: V-KPNO-Harris | 5375 AA

9: i-SDSS-III | 7480 AA 19: R-KPNO-Harris | 6425 AA

10: z-SDSS-III | 8932 AA

18

PINGSoft filters

3000 4000 5000 6000 7000 8000 9000
Wavelength

0.0

0.2

0.4

0.6

0.8

1.0
T

ra
ns

m
is

si
on

Hα 20Å FWHM
Hα 80Å FWHM
Johnson (1965)Johnson (1965)Johnson (1965)
Bessell (1990)Bessell (1990)Bessell (1990)
CTIO−SINGSCTIO−SINGSCTIO−SINGS
KPNO−HarrisKPNO−HarrisKPNO−Harris

SDSS−IIISDSS−IIISDSS−IIISDSS−IIISDSS−III

Figure 10: Default transmission filters included in PINGSoft, individual files can be found in the
$PINGSOFT PATH/filters directory.

Examples:

Obtain a V-band 2D FITS image of NGC5947.rscube.fits, using a Bessell (1990) filter, but shifted to
6400 Å, and applying a 2% clipping scaling to a Postscript output:

extract_filter, 'NGC5947.rscube.fits', 12, band=6400, prefix='NGC5947_V', /clip, /ps

Obtain a Hα narrow band image of ngc4625.rscube.fits using the CTIO-SINGS filter (20Å FWHM)
with continuum subtracted at ±100 Å using the /SUBTRACT option, and saving an output structure out:

extract_filter, 'ngc4625.rscube.fits', 2, out, /subtract

vfield 3D

Calculates the intrinsic velocity field in 3D data using a wavelength cross-correlation. Taking a user’s
given reference spaxel and a spectral window containing an emission line within that spectrum, the com-
mand applies a cross-correlation in wavelength with respect to the reference template and corrects the
IFS data by the calculated shift in lambda. The spaxel reference entry can be either an integer number
with the ID value of the reference spectrum (in IDL format) or a two element vector [x,y], with the pixel
coordinates (offsets) of the reference spectrum (only for 3D cubes). The procedure writes a velocity-field
corrected data file, a 2D image velocity map4, and shows on screen a histogram of the velocity shifts with
respect to the reference spectrum (in km/s). Additional information is printed on the terminal. If the
/PS keyword is set, the program writes an encapsulated Postscript file of the velocity shift histogram. All
variables can be recovered within a written binary file and an optional anonymous structure.

WARNING: The program has been tested using only strong emission lines as spectral templates, expect
strange behaviour with absorption or weak features. Note that for AGN/LINER kind of spectra, the
program can be confused if [N II] emission is of the same intensity (or greater) than Hα.

4 Only if the input FITS file is a 3D cube.

19

Calling sequence:

vfield_3D, 'OBJECT.fits', spaxel_ref, eline_ref [, OUT.str, VMAX=vmax, /PS,

LMIN=lmin, LMAX=lmax, CONT1=cont1, CONT2=cont2, /FORCE_FIT

PREFIX=prefix, PT=pt, EXTENSION=extension]

'OBJECT.fits': String of the wavelength calibrated RSS or 3Dcube FITS file

spaxel_ref: Either, an integer number with the ID value of the reference spectrum

(as seen by VIEW_3D, in IDL format) or a two element vector [x,y],

with the pixel coordinates of the reference spectrum (only for 3D cubes).

eline_ref: Wavelength guess value of the emission line to use in order to perform

the cross-correlation, e.g. Halpha 6563*(1+z)

OPTIONAL KEYWORDS

OUT.str: Name of the optional output structure (including OUT.vfield,

i.e. the shift applied to the spectra with respect to the reference spectrum).

VMAX: Maximum velocity (km/s) with respect to the reference spectrum for which

a wavelength shift is applied. Spectra with larger values are not shifted.

Default: 500 km/s

LMIN/MAX: min/max wavelength for the cross-correlation, default: eline +/- 100 Ang

CONT1/2: Continuum bands used to normalize the spectra, default: eline +/- 80 Ang

/PS: Writes an encapsulated Postscript file of the wavelength shift histrogram

/FORCE_FIT: Forces a Gaussian fit to each spectra before calculating the cross-correlation

(use with care, slower and somewhat inefficient)

Example:

Let’s consider the VLT-VIMOS observation of the LIRG IRAS F06295-1735: the user can note the
intrinsic velocity field of the object by moving the mouse cursor over the FoV and noticing the shift
of the Hα emission line across the field with respect to the reference vertical line (with the aid of the
following command):

view_3d, 'IRAS06295.rscube.fits', /clip, lmin=6650, lmax=6750, band=6700, filter=2, vline=6702

We calculate and correct for this shift by applying a cross-correlation in wavelength, using as a reference
the spaxel [15,15], and the Hα emission line at the observed wavelength 6700 Å:

vfield_3d, 'IRAS06295.rscube.fits', [15,15], 6700, out, /ps

PINGSoft: vfield_3D

==============================

Reference spaxel: [15,15]

Mean velocity shift: -20.1318

Sigma velocity shift: 100.093

Velocity field corrected FITS: IRAS06295_vfield.fits

Velocity map FITS: IRAS06295_vel.fits

Binary file saved: IRAS06295_vfield.sav

Histogram PS file: IRAS06295_vfield.eps

The procedure writes the velocity-field corrected cube IRAS06295 vfield.fits, the histogram of the
velocity shifts with respect to the reference spectrum (in km/s) and a Hα velocity map of the object as
shown in Fig. 11.

20

PINGSoft: velocity field

−600 −400 −200 0 200 400 600
Velocity (km/s)

0.00

0.05

0.10

0.15

0.20

S
pe

ct
ra

 fr
ac

tio
n

IRAS F06295−1735: velocity map (km/s)

−93.4

−52.4

−11.5

29.4

70.4

10 0 −10
∆α (arcsec)

−10

0

10

∆δ
 (

ar
cs

ec
)

Figure 11: Velocity field histogram and Hα velocity map of IRAS F06295-1735, both derived with the
vfield 3D command.

The user can verify that all the spectra is aligned to the reference spectrum zero-velocity in velocity-field
corrected file:

view_3d, 'IRAS06295_vfield.fits', /clip, lmin=6650, lmax=6750, band=6700, filter=2, vline=6702

The output structure contains the values out.VFIELD and out.MAPV corresponding to the velocity field
and velocity map respectively.

s2n ratio 3D

Calculates the continuum and emission-line S/N of the IFS data, and allows to interactively extracts
spectra based on a S/N floor. The program calculates the S/N ratio on a pre-defined continuum and
emission-line region per each spaxel. The user has to provide: 1) the central (observed) wavelength of a
(featureless) continuum band (used to calculate the (S/N)cont), and 2) a central (observed) wavelength
of an emission-line feature band (used to calculate the (S/N)eline).

When launched, the program displays the integrated spectrum of the input IFS data, and shows the con-
tinuum and emission-line spectral regions defined by the input parameters (see Fig. 12); in the emission-
line case, the graph also displays the pseudo-continuum adjacent bands used to calculate (S/N)eline. If
the default values does not satisfy the user, the band widths and central wavelengths of the pseudo-
continuum adjacent bands can be set with the WCONT, WIDTH and PSEUDO keywords (see below). The
command prompts for confirmation, if the current ranges are accepted, the program calculates the S/N
for each case and displays a new window with four panels (see Fig. 12): the left-column shows the S/N
as a function of spaxel position for the continuum (top) and the emission-line (bottom), on each case, a
red-horizontal line marks a guess 1-σ S/N threshold, spaxels above that threshold are displayed in the
FoV panels on the right-column. At this point, the user can interactively change the spaxel threshold
and/or the continuum S/N calculation (see below), the program prompts for new threshold input values
and updates the corresponding window.

If the user accepts and proceeds with the extraction, a whole series of files are created, including a
RSS file with the spaxels above the S/N threshold, the integrated spectrum of the selected spaxels (in
ASCII, FITS and EPS format), a table with the calculated signal, noise, S/N ratio and IDL index for each
selected spaxel, a S/N map an extraction mask (0/1 values) in FITS format, for the both the continuum
and emission-line cases. Additionally, the final selected spaxels and S/N maps are shown on screen.

S/N calculation: The S/N ratio is calculated using the function s2n rat fun. In the case of the
emission-line, the value is calculated following the prescriptions in Sec. 2 of Rosales-Ortega et al. (2012).

21

Figure 12: Left: First displayed window of the s2n ratio 3D command. showing the integrated spec-
trum of the input IFS data, and the continuum and emission-line spectral regions defined by the input
parameters. Right: Second displayed window showing the S/N as a function of spaxel position for the
continuum (top) and emission-line (bottom) cases.

In the case of the continuum, we use a standard definition , i.e. the ratio of the average flux level value
(signal) to the standard deviation of the signal (noise), any systematic slope in the spectral window is
corrected by fitting a linear model to detrend the data before calculating the stddev. This “working”
S/N definition assumes that the standard deviation is dominated by noise instead of real spectral features,
and therefore it is important in practice to select a “clean” spectral region for its calculation. However,
the user can select (either interactively or a priori) two additional ways of calculating the S/N in the
continuum case:

1. /SQRTN, the continuum noise is equal to sqrt[stddev(flux)], i.e. the squared-root of a detrended
standard deviation of the signal. This definition may result useful when the noise is strongly non
Poissonian, if the structure of the signal in the spaxels is not optimally weighted and/or if there
are strong gradients in the S/N.

2. /PROXY, in this case the signal is calculated as the sum of the flux (instead of the mean) and the
noise is equal to sqrt(signal). This definition represents a “density” S/N, and follows the surface
brightness of the object at the chosen spectral band.

These two options are NOT formal definitions of S/N and should NOT be used as so, but instead as
proxies of the signal in the IFS data which can be useful for extracting relevant regions.

Interactivity: The interactivity can be avoided by using: 1) the /SKIP parameter, which skips the
wavelength range confirmation and prints minimum output information on-screen; and 2) by setting the
S2N MIN keyword, which is two-entries vector [s2n cont,s2n eline] containing the S/N threshold val-
ues, when this parameter is set, the script extracts automatically those spaxels above the input values
for both samples without further interaction.

Calling sequence:

s2n_ratio_3d, 'OBJECT.fits', lam_cont, lam_eline [, OUT.str, S2N_MIN=[s2n_cont,s2n_eline],

WIDTH=width, WCONT=wcont, PSEUDO=[lam_pseudo1,lam_pseudo2], /SQRTN, /PROXY, /SKIP,

PREFIX=prefix, PT='Postable.txt', EXTENSION=extension, _EXTRA={extra},

(+ all graphic options as VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated RSS or 3Dcube FITS file

lam_cont: Central (observed) wavelength of the (featureless) continuum band

to calculate the (S/N)_cont

22

lam_eline: Central (observed) wavelength of the emission line feature band

to calculate the (S/N)_eline

OPTIONAL KEYWORDS

OUT.str: Name of the optional output structure.

S2N_MIN: A two-entries vector [s2n_cont,s2n_eline] containing the S/N threshold values.

NOTE: when this parameter is included, the script extracts automatically those

spaxels above the input values for both samples without interaction.

WIDTH: Width (in lambda units) of the spectral regions (elines and pseudo-continuum bands)

from where the (S/N)_eline is obtained. Default: 50 lamba units.

WCONT: Width (in lambda units) of the continuum band from where the (S/N)_cont is obtained

Default: 50 units.

PSEUDO: A two-entries vector [lam_pseudo1,lam_pseudo2] containing the central wavelenghts

of the pseudo-continuum adjacent bands used to calculate (S/N)_eline.

Default: [lam_eline-100,lam_eline+100]

/SQRTN: When this keyword is set, the continuum noise is equal to sqrt(sigma). This may be useful

when the noise is strongly non Poissonian, if the structure of the signal in the spaxels

is not optimally weighted and/or if there are strong gradients in the S/N.

/PROXY: When this keyword is set, the signal is calculated as the sum of the flux

(instead of the mean) and the noise is equal to sqrt(signal). This definition

represents a "density" S/N, and follows the surface brightness of the object at the

chosen spectral band.

/SKIP: Skips wavelength range confirmation and prints minimum output information on-screen

Outputs:

PINGSoft: S/N ratio extraction

==

Files written:

CONTINUUM sample

Extracted RSS: PREFIX.cont_rss.fits

Position table: PREFIX.cont_rss.pt.txt

FoV Postscript: PREFIX.cont_FoV.eps

Integrated FITS: PREFIX.cont_integ.fits

ASCII: PREFIX.cont_integ.txt

Postscript: PREFIX.cont_integ.eps

S/N table ASCII: PREFIX.cont_s2n.txt

S/N map FITS: PREFIX.cont_s2n.fits

Extraction mask: PREFIX.cont_mask.fits

EMISSION sample

Extracted RSS: PREFIX.eline_rss.fits

Position table: PREFIX.eline_rss.pt.txt

FoV Postscript: PREFIX.eline_FoV.eps

Integrated FITS: PREFIX.eline_integ.fits

ASCII: PREFIX.eline_integ.txt

Postscript: PREFIX.eline_integ.eps

S/N table ASCII: PREFIX.eline_s2n.txt

S/N map FITS: PREFIX.eline_s2n.fits

Extraction mask: PREFIX.eline_mask.fits

Output structure: PREFIX.str.sav

Plots PNG image: PREFIX.plots.png

If not PREFIX set, then PREFIX='s2n_ratio'

23

Examples:

1. We want to calculate the S/N for the galaxy IRAS F06295-1735 in the “featureless” continuum band
centered at 6500 Å and width 50 Å, and on the Hα emission line, at the approximate observed wavelength
6702 Å and width 20 Å (see left-panel of Fig. 12):

s2n_ratio_3d, 'IRAS06295.rscube.fits', 6500, 6702, width=20, wcont=50, /clip

When the program prompts for new S/N thresholds, we choose S/N=1 for the continuum case (standard
definition) and S/N=15 for the emission-line case, and proceed with the extraction (right-panel Fig. 12).
The program writes a whole set of data products, in particular, the s2n ratio.eline mask.fits was
applied to the velocity field 2D FITS image obtained in the example of vfield 3D (IRAS06295 vel.fits)
in order to mask and produce the right-panel of Fig. 11.

2. Fig. 13 shows the difference between the “conventional” S/N definition and the proxy to S/N which
can be used with s2n ratio 3D. The top row shows the S/N measured in the conventional manner
(mean/stddev) for the galaxy NGC 7466, using the spectral window centered at 5725 Å, with a width
of 100 Å, the red symbols corresponds to those above a S/N threshold of 5, which cover a substantial
fraction of the area of the galaxy. The bottom row shows the same S/N calculation, but using the S/N
“proxy” as defined above, in this case the S/N threshold is 1. Note that the S/N “proxy” seems to better
follow the morphology of the targets above a given S/N threshold (i.e. the signal surface brightness,
which is important for a-posteriori Voronoi binning, see below). Although this trick improves S/N, the
user must bear in mind that it is NOT a true S/N-based calculation.

Figure 13: Top: S/N per spaxel in the galaxy NGC7466 calculated using the “conventional” definition.
Bottom: Same as above, but using the /PROXY keyword as explained in the text.

24

voronoi 3D

Applies the Voronoi tessellation method to bin the IFS data to a target signal-to-noise ratio per bin. This
program is a wrapper of the voronoi 2D binning code by Cappellari & Copin (2003) which performs
an adaptive spatial binning of IFS data. The Voronoi Binning method optimally solves the problem of
preserving the maximum spatial resolution of general two-dimensional data, given a constraint on the
minimum S/N ratio. In order to work properly, this routine needs the voronoi 2D binning code to be
in the $IDL PATH. The source code can be found at:

http://www-astro.physics.ox.ac.uk/∼mxc/idl/#binning

In addition, this program MUST BE used with the output of s2n ratio 3D (or use a similar input format).

The voronoi 2D binning code requires as an input the spatial position (x,y), the signal and noise (as
separate values) in order to perform the binning, note that the code does not care what is the proxy
used to calculate the “signal” or “noise”. The signal and noise can be calculated by s2n ratio 3D for
all the spaxels within a IFS data file (as described above, see example below), and the information can
be passed as input for this Voronoi binning script (either considering all the spaxels or only those above
a certain threshold, using any of the available S/N “proxies”). In the case of s2n ratio 3D, the outputs
used by voronoi 3D can be either the “S/N table ASCII” (passed through the ASCII S2N keyword) or
the output IDL structure (passed through the STR S2N keyword, see below), either for the continuum or
the emission-line case.

The most important input parameter for the Voronoi binning is the “target S/N”, i.e. the minimum
required S/N that each bin must posses after the tessellation. Therefore, the main voronoi 3D inputs
are: 1) the input IFS data file, 2) the S/N information, and 3) the target S/N. The program then invokes
the voronoi 2D binning script, prints the binning/iterations information on the terminal and displays a
window which shows on the top-panel the FoV of the spatial binning and on the bottom the S/N-per-bin
as a function of radius (see Fig. 14). At this point, the S/N-binning target can be changed interactively
or the user can proceed with the extraction. In the latter case, the script writes a set of output files and
displays on the screen the FoV of the input IFS data overlaid with the binning tessellation (where all
visual options of view 3D can be applied). The output files include: a) a RSS file with the integrated
spectra of each Voronoi bin (the coordinates of the associated Pseudo-Position table correspond to the
centre-of-mass of the bin); b) a 2D FITS segmentation map, corresponding to the Voronoi bins; and 3)
a full segmented 3D cube. An optional Postscript file of the FoV tessellation can also be included.

Important note on S/N and Voronoi binning:

DO NOT TRUST the S/N-per-bin reported by the voronoi 2D binning code (specially if the input
signal/noise was derived using the “conventional” S/N definition). Several tests have shown that the
real S/N goes as the signal-to-ratio value reported by the code per bin, divided by the squared-root of
the number of pixels in the bin: S/N = (S/NCapellari−bin) / (

√
Npixels−per−bin). The best strategy is to

recalculate the S/N of the output Voronoi-binned spectra (e.g. using s2n ratio 3D), update the target
S/N in voronoi 3D and proceed iteratively until the “real” S/N-per-bin corresponds to the user’s target
S/N.

On the other hand, either for a S/N-floor extraction, or spatially adaptive-binning, we strongly sug-
gest to use a proxy that goes with the inverse of the square of the signal in order to trace the morphology
and extract the relevant regions (note that the noise ∼ sqrt(signal) recipe implies in practice that binning
will proceed till we reach a certain flux level). Use this information as input for the Cappellari’s code and
then recalculate the S/N of the output, Voronoi-binned spectra using the “conventional” S/N definition
if you want to report S/N-per-bin in your data (see examples below).

Calling sequence:

voronoi_3D, 'OBJECT.fits', S2N_target, (ASCII_S2N='ascii_s2n' -OR- STR_S2N=str_s2n),

[/NORMALIZE, /SEGMENT, /PS, PREFIX=prefix, EXTENSION=extension, PT='PosTable.txt',

/NO_CVT, /WVT, PIXSIZE=pixelsize, (voronoi_2d_binning.pro options)

(+ all display options as in VIEW_3D)]

25

http://www-astro.physics.ox.ac.uk/~mxc/idl/#binning

'OBJECT.fits': String of the wavelength calibrated 3D cube or RSS FITS file.

S2N_target: Minimum required S/N that each bin must posses after the tessellation

and EITHER:

ASCII_S2N: String with the name of the "S/N table ASCII" output of S2N_RATIO_3D

(or a table with a similar format) containing the spatial position (x,y),

the signal and noise (as separate values) in order to perform the bining.

OR

STR_S2N: Variable of the output IDL structure of S2N_RATIO_3D with the same input

information as described above.

OPTIONAL KEYWORDS

/NORMALIZE: If set, the integrated spectrum is normalized by the number

of spaxels within the Voronoi bin.

/SEGMENT: If set, the on-screen or Postscript visualisation of the

segmented regions uses a special, nicer color-coding

/PS: Writes an encapsulated Postscript file of the segmented regions

VORONOI_2D_BINNING options:

/NO_CVT: Set this keyword to skip the Centroidal Voronoi Tessellation

(CVT) step (vii) of the algorithm in Section 5.1 of Cappellari & Copin (2003).

/WVT: When this keyword is set, the routine bin2d_cvt_equal_mass is

modified as proposed by Diehl & Statler (2006, MNRAS, 368, 497).

PIXSIZE: Optional pixel scale of the input data.

Figure 14: On the left-panel, S/N per spaxel for the IFS cube of NGC 5947 calculated using the
s2n ratio 3D and the /PROXY keyword, the output information corresponding to the continuum case
with a S/N threshold of 1 is passed as input to the voronoi 3D command, which generates a Voronoi
binning with a target S/N of 15 (right-panel).

26

Outputs:

If PREFIX is set:

Segmentation map: PREFIX_voronoi.seg.fits

Extracted spectra in RSS: PREFIX_voronoi.rss.fits

Pseudo-position table: PREFIX_voronoi.rss.pt.txt

Full segmented 3D cube: PREFIX_voronoi.cube.fits

Postscript segmented FoV: PREFIX_voronoi.FoV.eps (only if /PS set)

If PREFIX is not set, PREFIX=OBJECT

Examples:

1. We want to apply the Voronoi binning tessellation to the IFS cube NGC5947.rscube.fits using a
featureless continuum band. For doing so, we calculate the S/N-per-spaxel at 6200 Å within a 200 Å
width band, using the /PROXY option of the s2n ratio 3D routine (left-panel of Fig. 14):

s2n_ratio_3d, 'NGC5947.rscube.fits', 6200, 6700, wcont=200, /skip, s2n=[1,10], /proxy

In this example, we only consider spaxels with S/N-proxy in the continuum greater-equal than 1. We
then apply the voronoi 3D script using the “S/N table ASCII” output of s2n ratio 3D as input in-
formation, setting a target S/N of 15. Fig. 15 shows the output, full-segmented Voronoi-binned cube
NGC5947 voronoi.cube.fits as seen by view ifs:

voronoi_3d, 'NGC5947.rscube.fits', 15, ASCII_S2N='s2n_ratio.cont_s2n.txt', /segment

Figure 15: Widget visualisation of the output Voronoi-binned cube described above.

2. This example shows the difference between the S/N-per-bin calculated by the voronoi 2D binning
script and the real S/N as derived by a conventional definition. The top-panels of Fig. 16 shows the S/N-
per-spaxel of the CALIFA galaxy UGC 12054 calculated on a continuum band, the standard definition of
S/N was used (mean/stddev), with a threshold of S/N=5. Therefore, if we want to perform a Voronoi
binning the target-S/N should be above this value.

We then apply the voronoi 2D binning code with a target S/N of 30, a typical value for a good
spectrum to apply e.g. stellar synthesis analysis. The bottom-panels of Fig. 16 shows the Voronoi
binning and the output statistics. First, we can note that the bins are very small and are practically the
same size as the original spaxels. The S/N vs. radius plot shows that the majority of the spaxels are
around S/N ∼30 with a certain dispersion, plus some outliers with higher S/N, as expected.

We then calculate the S/N of the output binned spectra using exactly the same definition and pa-
rameters as before. Fig. 17 shows the S/N calculation for all the bins within the new Voronoi cube. By

27

definition, as the target S/N was set to 30, all the bins should be around or above that value (as shown
in the bottom-panel of Fig. 16). However, we notice that only the central bins are above the S/N target
(in red) and that the S/N of most of the bins are below the target value. In order to reach a standard
S/N ∼30 from the binned spectra, we should use an input target-S/N in the voronoi 2D binning script
of ∼100.

Figure 16: Top: S/N-per-spaxel of the CALIFA galaxy UGC 12054 using the conventional S/N definition
on the continuum. Bottom: Voronoi binning of the same object using a target-S/N of 30.

Figure 17: S/N-per-spaxel of the Voronoi-binned cubed of UGC 12054 using the same definitions and
parameters as before. Note that only a small fraction of the bins have a real S/N equal to the target one.

28

s2n optimize

Extracts spectra interactively based on a S/N continuum and emission line optimization method by
Rosales-Ortega et al. (2012) using cumulative integrated spectra.

The optimization method is performed by first calculating the (S/N)continuum and (S/N)emission for
each of the spaxels (preferably in a velocity-corrected 3D cube) following the same prescriptions as in
s2n ratio 3D. The spaxels are then sorted into two groups (continuum and emission-line), one in de-
creasing order of the (S/N)c value and the other in decreasing order of the (S/N)em. The script creates
an integrated spectrum for each of the spaxels subsample by adding the spectra in the sorted order as
described before. In each step, the procedure calculates the S/N in the continuum and/or emission line
feature in the new generated spectrum. The rationale of this criterion is the following: spectra of good
quality (high S/N) should help to enhance the S/N of the integrated spectrum in each of the two groups.
However, if the inclusion of a new spectrum (spectra) decreases the S/N of the integrated spectrum with
respect to the values found in previous steps, then the individual S/N of the spectrum (spectra) for which
this turn-off is found marks the tentative threshold value (or range) sought for high quality spectra within
an IFS cube.

When launched, the program displays the integrated spectrum of the input IFS data, and shows
the continuum and emission-line spectral regions defined by the input parameters; in the emission-line
case, the graph also displays the pseudo-continuum adjacent bands used to calculate (S/N)em. If the de-
fault values does not satisfy the user, the band widths and central wavelenghts of the pseudo-continuum
adjacent bands can be set with the WCONT, WIDTH and PSEUDO keywords. The command prompts for
confirmation, if the current ranges are accepted, the program calculates the S/N for each case and dis-
plays a new window with six panels: The left-column shows the “statistical” S/N of the continuum (top)
and emission (bottom) features sorted in decreasing order as a function of spaxel position. The blue
vertical-line shows the position at which S/N=1. The middle-column panels show the cumulative S/N
of the integrated spectra in the same sorted order as the left-panels. The red vertical-line shows the
position of the maximum S/N. Spaxels to the left of this threshold are displayed in the FoV panels on the
right-column. Statistical information is printed on the terminal. At this point, the user can interactively
change the spaxel threshold and/or the continuum S/N calculation (as explained in in s2n ratio 3D),
the program prompts for new threshold input values and updates the corresponding window. If the user
accepts and proceeds with the extraction, a whole series of files are created with the same format as in
s2n ratio 3D. The final selected spaxels and S/N maps are shown on screen.

Calling sequence:

s2n_optimize, 'OBJECT.fits', lam_cont, lam_eline [, OUT.str, WIDTH=width, WCONT=wcont,

PSEUDO=[lam_pseudo1,lam_pseudo2], /SQRTN, /PROXY, /SKIP,

PREFIX=prefix, PT='Postable.txt', EXTENSION=extension,

(+ all graphic options as VIEW_3D)]

'OBJECT.fits': String of the wavelength calibrated RSS or 3Dcube FITS file

lam_cont: Central (observed) wavelength of the (featureless) continuum band

to calculate the (S/N)_cont

lam_eline: Central (observed) wavelength of the emission line feature band

to calculate the (S/N)_eline

+ Similar keywords as S2N_RATIO_3D

Examples:

Using the same example as for the s2n ratio 3D case, we now use the S/N optimization method to
extract integrated spectra based on a continuum band at 6200 Å and on the Hα emission line:

s2n_optimization, 'NGC5947.rscube.fits', 6200, 6700

29

IFS manipulation

split califa

Extracts the FITS extensions of the CALIFA survey data, writing individual files with the appropriate
headers for 3D visualisation.

Calling sequence:

split_califa, 'OBJECT.fits' [, PREFIX='prefix']

Outputs:

Data: PREFIX.DATA.fits

Errors: PREFIX.ERROR.fits

Bad pixels: PREFIX.BADPIX.fits

Error scaling: PREFIX.ERRWEIGHT.fits (only 3D cubes)

Position table: PREFIX.POSTABLE.fits (only RSS files, binary table)

Figure 18: ERROR FITS extension cube of the CALIFA galaxy UGC 1057 extracted with split califa
as seen by view ifs.

cube2rss

Generates a RSS file and a associated position table from a 3D cube FITS file. The script transforms a
3D cube FITS file into a Row-Stacked-Spectra FITS file and generates the (continuous) position table of
the RSS according to the original geometry of the cube. The size, resolution and reference pixel of the
Field-of-View are deduced from the 3D FITS header (e.g. NAXIS1, CDELT1, CRPIX1, etc.). The geome-
try which is assumed defines the reference pixel (1,1) at the bottom-right corner of the X-Y projection,
and the (N,M) pixel at the top-left of the image.

Supported geometries include:

1. The pixel index increases horizontally, from right to left on the same row (e.g. PPAK, CALIFA).

2. The index increases vertically, from bottom to top on the same column (e.g. VIMOS).

30

The default is set to 1, other geometries can be easily incorporated. If the FITS header includes a ref-
erence pixel and WCS, this information is considered in order to create the associated position table (in
the view 3D format). If the /CALIFA keyword is set, the program needs only the name of the input
’OBJECT.rscube.fits’ file in order to generates the RSS FITS with all the appropriate parameters and
the position table in the standard North-East configuration.

Calling sequence:

cube2rss, 'input_3Dcube.fits' [, GEOMETRY=geometry, PREFIX='prefix', TRIM_RED=trim_red,

/PPAK, /SILENT]

'input_3Dcube.fits': 3D cube FITS input file.

OPTIONAL KEYWORDS:

TRIM_RED: Number of pixels to be removed at the red end of each

spectrum (useful for cosmetic purposes).

/PPAK: If set, creates the position table for the PPAK instrument in

the right standard North-East orientation.

Miscellaneous functions

This section contains some useful functions that can be used as stand-alone programs for general purposes
in astronomy and IFS. Some of them are subroutines of main PINGSoft programs.

redshift 3D

Returns the redshift of the input IFS data measured from the integrated spectra.

Calling sequence:

result = redshift_3D('OBJECT', [lam_rest, WIDTH=width, LAM_Z=lam_z, /SILENT])

'OBJECT.fits': String of the IFS 3D cube, RSS FITS or 1-D ASCII file

WIDTH: Width of the spectral band centered at lam_rest where

the reference emission-line will be sought for the

redshift determination.

LAM_Z: output, lam_rest at measured redshift.

Defaults: lam rest = 6563 Å (i.e. Hα), WIDTH = 100 Å. Note potential problems if the intensity of [N II]
is approximate or higher than Hα (e.g. LINERS/AGNs).

offset2radec

Transforms small angle offsets in arcsec from a reference point to equatorial coordinates. The value of
Right Ascension is an approximation, valid within 1 degree.

Calling sequence:

result = offset2radec(RA_ref, Dec_ref, X_off, Y_off, /SEXAG)

RA_ref/Dec_ref: coordinates of the reference point in DEGREES

X_off/Y_off: offset from the reference point in ARCSEC

/SEXAG: Output in sexagesimal units (default: degrees).

OUTPUT: a vector with 2 numbers containing the coordinates in DEGREES:

31

result = [RA, Dec]

if the /SEXAG parameter is set, then a vector with 6 numbers:

result = [RA_hr,RA_min,RA_sec, Dec_deg,Dec_min,Dec_sec]

Example:

Calculate the equatorial coordinates of an offset (∆RA,∆Dec) = (15, 23) in arcsec from the reference
point (0,0) with coordinates RA=23.501865, Dec=15.528838:

offset = offset2radec(23.501865, 15.528838, 15, 23)

radec2offset

Transforms equatorial coordinates to small angle offsets from a given reference point.

Calling sequence:

result = radec2offset(RA_ref, Dec_ref, RA_off, Dec_off, /PLOT)

RA_ref/Dec_ref: Coordinates of the reference point

RA_off/Dec_off: Coordinates of the offset from the reference point

/PLOT: Plots a diagram of the offset from the reference point

NOTE: All coordinates must be either in DEGREES or in SEXAGESIMAL notation,

in the latter case, each entry must be a vector with 3 entries, i.e.

RA = [hr,min,sec]

Dec = [deg,min,sec]

OUTPUT: a vector with 4 numbers, containing the X,Y-offsets in ARCSEC,

the first 2 numbers using the RA approximation for small angles

with the right symbol for a NE configuration.

The second pair of offsets are the exact values using the general

formula, but probably with a wrong symbol.

result = [X-approx,Y-approx, X-exact,Y-exact]

Example:

offset = radec2offset(23.501865, 15.528838, 23.506190, 15.535227, /plot)

set value2D

Replaces the values in a 2D array of an index vector found with the IDL WHERE() function.

Calling sequence:

result = set_value2D(image, index, value)

image: Variable name of the 2D array where values will be replaced.

index: Index vector produced by the WHERE() function.

value: Value to be replaced within the 2D array at the index locations.

result: New 2D array with the values substituted.

32

Example:

IDL> image = congrid(bindgen(3,3),9,9)

IDL> print, image

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

3 3 3 4 4 4 5 5 5

3 3 3 4 4 4 5 5 5

3 3 3 4 4 4 5 5 5

6 6 6 7 7 7 8 8 8

6 6 6 7 7 7 8 8 8

6 6 6 7 7 7 8 8 8

IDL> index = where(image eq 4)

IDL> new = set_value2d(image,index,9)

IDL> print, new

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

0 0 0 1 1 1 2 2 2

3 3 3 9 9 9 5 5 5

3 3 3 9 9 9 5 5 5

3 3 3 9 9 9 5 5 5

6 6 6 7 7 7 8 8 8

6 6 6 7 7 7 8 8 8

6 6 6 7 7 7 8 8 8

set value3D

Replaces vectors in a 3D array of an index vector found with the IDL WHERE() function.

Calling sequence:

result = set_value3D(cube, index, vector)

cube: Variable name of the 3D array where vectors will be replaced

index: Index vector produced by the WHERE() function

(based on a 2D slice of the cube)

vector: Vector to be replaced within the 3D array at the index locations.

result: New 3D array with the vectors substituted.

Example:

IDL> cube = bindgen(3,3,3)

IDL> print, cube

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

18 19 20

21 22 23

24 25 26

; Index vector produced by the WHERE() function

; based on a 2D slice of the cube:

IDL> index = where(cube[*,*,0] gt 5)

33

IDL> vector = [0,0,0]

IDL> new = set_value3d(cube,index,vector)

IDL> print, new

0 1 2

3 4 5

0 0 0

9 10 11

12 13 14

0 0 0

18 19 20

21 22 23

0 0 0

Retired routines

Scripts belonging to previous PINGSoft versions located at the retired/ directory, although this routines
are no longer supported, they might be useful for RSS data manipulation.

read rss: Reads a RSS FITS file and stores the data into an IDL vector.

extract rss: Extracts a section of consecutive rows in a RSS FITS file and creates a new one.

merge rss: Merges a list of RSS files into a single RSS file.

merge ptable: Concatenates a list of position table files into a single one for mosaicking purposes.

shift ptable*: Shifts the reference point or applies an offset to a given position table.

get new pt: Generates a new position table based on an index of selected spaxels.

show hdr: Shows on screen the header of a FITS file, which can be written to an ASCII file.

write hdr: Adds or updates an entry in the header of a FITS file.

copy hdr: Copies the header of one FITS file to another.

write wcs: Adds or updates the WCS (World Coordinate Systems) entries in a FITS header.

* This is a subroutine of PINGSoft, found in the parent directory.

34

5 Additional notes

5.1 Intensity scaling

The default colour-scale of the visualisation is obtained by sampling the range of intensities within the
chosen narrow band into an ad hoc colour dynamic range of 255 values (i.e. equal to the number of values
in a given IDL colour table). However, very different ranges of intensities are expected depending of the
object, spectral range and signal-to-noise of the observations. Given that the main purpose of this routine
is to visualise easily the IFS data, several intensity scaling functions are available to the user in order
to improve the contrast and the identification of spectral features: a full linear (min/max) sampling, a
power-law (gamma) function, a logarithmic transformation, and an inverse hyperbolic sine scaling. For
a full explanation of the scaling functions and these parameters see the Coyote documentation of the
cgImgScl routine.

5.2 PMAS users

The automatic identification of the position table for the default instruments/setups is based on the
number of rows in the RSS file. However for PMAS, all three resolutions yield a RSS file with the same
number of spectra. If the user intends to use the PINGSoft default position tables for PMAS, he/she
needs to define the instrument’s resolution in the FITS header. For that purpose, apply the appropriate
command to the science RSS file, i.e.

write_hdr, 'pmas_object.fits', 'PMASR', 0.50, 'PMAS resolution', format='f4.2'
write_hdr, 'pmas_object.fits', 'PMASR', 0.75, 'PMAS resolution', format='f4.2'
write_hdr, 'pmas_object.fits', 'PMASR', 1.00, 'PMAS resolution', format='f4.2'

Then you can use directly:

view_rss, 'pmas_object.fits'

5.3 VIMOS users

Same as above, the user needs to define the instrument’s resolution in the FITS header by setting the
appropriate VIMOSR entry:

write_hdr, 'vimos_object.fits', 'VIMOSR', 0.33, 'VIMOS resolution', format='f4.2'
write_hdr, 'vimos_object.fits', 'VIMOSR', 0.67, 'VIMOS resolution', format='f4.2'

35

6 PINGSoft quick list

Visualisation

view ifs: Provides a 2D spatial and spectral interactive visualisation widget for 3D cubes and RSS IFS files.

view 3D: Command-line version of view ifs, it provides an interactive visualisation of the spaxels and spectra of
a 3D cube or a RSS file.

Spectra extraction

extract region: Extracts the spectra of regions selected by hand.

extract aperture: Extracts the spectra within an elliptical or circular aperture.

extract radial: Extracts radial average spectra within consecutive elliptical rings from a reference point, based
on either fixed bins or S/N floor.

extract slit: Extracts the spectra within a rectangular aperture, resembling a long-slit observation.

extract cone: Extracts the spectra within a region defined by a hyperbolic cone.

extract mask: Extracts the spectra based on a user’s given mask or segmentation map.

integrate 3D: Integrates the spectra within a 3D cube or RSS file into a single spectrum.

Data products and analysis

extract filter: Generates a 2D FITS image after convolving the 3D data with a narrow or broad-band filter.

vfield 3D: Calculates the intrinsic velocity field in 3D data using a wavelength cross-correlation.

s2n ratio 3D: Calculates the continuum and emission-line S/N of the IFS data, and allows to interactively ex-
tracts spectra based on a S/N floor.

voronoi 3D: Applies the Voronoi tessellation method to bin the IFS data to a target signal-to-noise ratio per bin.

s2n optimize: Extracts spectra interactively based on a S/N continuum and emission line optimization method
using cumulative integrated spectra.

IFS manipulation

split califa: Extracts the FITS extensions of the CALIFA survey data, writing individual files with the appro-
priate headers for 3D visualisation.

cube2rss: Generates a RSS file and a associated position table from a 3D cube FITS file.

Miscellaneous functions

redshift 3D: Returns the redshift of the input IFS data measured from the integrated spectra.

offset2radec: Transforms small angle offsets in arcsec from a reference point to equatorial coordinates.

radec2offset: Transforms equatorial coordinates to small angle offsets from a given reference point.

set value2D: Replaces the values in a 2D array of an index vector found with the IDL WHERE() function.

set value3D: Replaces vectors in a 3D array of an index vector found with the IDL WHERE() function.

36

References

Cappellari M., Copin Y., 2003, MNRAS, 342, 345

Rosales-Ortega F. F., 2011, NewA, 16, 220

Rosales-Ortega F. F., Arribas S., Colina L., 2012, A&A, 539, 73

Rosales-Ortega F. F., Kennicutt R. C., Sánchez S. F., Dı́az A. I., Pasquali A., Johnson B. D., Hao C. N.,
2010, MNRAS, 405, 735

Sánchez S. F., Rosales-Ortega F. F., Marino R. A., Iglesias-Páramo J., Vı́lchez J. M., Kennicutt R. C.,
Dı́az A. I., Mast D., et al., 2012, A&A, 546, 2

Sandin C., Becker T., Roth M. M., Gerssen J., Monreal-Ibero A., Böhm P., Weilbacher P., 2010, A&A,
515, 35

Copyright© 2010,2012 F. Fabián Rosales-Ortega

PINGSoft is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, version 3.

PINGSoft is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

The GNU General Public License is found in: http://www.gnu.org/licenses/gpl.html

37

http://www.gnu.org/licenses/gpl.html

	Front matter
	1 What is PINGSoft?
	1.1 New features

	Acknowledgements
	2 Installation
	2.1 IDL Graphic Settings
	2.2 Mouse cursor problems in MacOSX

	3 Supported formats
	3.1 The 3D cube format
	3.2 The RSS format
	3.3 Default supported instruments

	4 The PINGSoft integral field spectroscopy software
	Visualisation
	 view_ifs
	 view_3D
	Spectra extraction
	 extract_region
	 extract_aperture
	 extract_radial
	 extract_slit
	 extract_cone
	 extract_mask
	 integrate_3D
	Data products and analysis
	 extract_filter
	 vfield_3D
	 s2n_ratio_3D
	 voronoi_3D
	 Important note on S/N and Voronoi binning

	 s2n_optimize
	IFS manipulation
	 split_califa
	 cube2rss
	Miscellaneous functions
	 redshift_3D
	 offset2radec
	 radec2offset
	 set_value2D
	 set_value3D
	Retired routines

	5 Additional notes
	5.1 Intensity scaling
	5.2 PMAS users
	5.3 VIMOS users

	6 PINGSoft quick list
	Copyright

